
The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

Exploring Cosmology with SDAV Technologies

Tom Peterka, Venkat Vishwanath, Joe Insley, Juliana Kwan, Adrian Pope, Hal Finkel, Katrin Heitmann, Salman Habib (ANL), Jon
Woodring, Chris Sewell, Jim Ahrens (LANL), George Zagaris, Robert Maynard, Berk Geveci (Kitware), Wei-keng Liao, Mostofa

Potwary, Ankit Agrawal, Saba Sehrish, Alok Choudhary (NU)

Above: Cosmology tools plugin in ParaView
promotes interactive feature exploration and includes
a parallel reader for Voronoi tessellations and
Minkowski functionals over connected components.

Right: Connected components of
Voronoi cells that have been filtered

on cell volume are further
characterized.

Visualization

Feature Detection & Modeling !"#$%&'()'(*%

+$,$($'%-.//.##"0$(%

12#0/-,."3%4.-.50$(%

&."-2,.%6,"57'(*%

8("#9/'/%
6$$#/%

In situ
analysis

:","+'.;%

Visualization
and further
analysis

 Storage

8("#9/'/%
5$(<*2,"0$(%

='32#"0$(%
>$(<*2,"0$(% !8>>%

CosmoTools: In Situ Analysis
Framework

Left: Multistream counting consists of
deforming a uniform mesh with fixed
connectivity but updated particle positions
and classifying structures by number of
stream crossings. Speedup using DAX
toolkit is shown.

Left: Comparison of density-
based clustering (DBSCAN) and
HACC friends-of-friends (FOF)
halo finder shows similar results
but improved linking at halo
edges and less false linkage.
Scalability of parallel DBSCAN
is shown in center and right.

Right: Vl3 is a
parallel visual

analysis framework
for Blue Gene

supercomputers,
GPU-based

clusters, and
scientists’ laptops.
Its modular design
scales to 16K GPU
cores and supports

interactive visual
analysis and data

exploration of 1
trillion particles.

Checkpoint and Analysis I/O

Tess: In Situ Voronoi
Tessellation Library

20
50

10
0

20
0

Strong Scaling

Number of Processes
Te

ss
el

la
tio

n
Ti

m
e

(in
clu

di
ng

 I/
O

) (
s)

128 256 512 1024 2048 4096 8192 16384

1024^3 particles
512^3
256^3
128^3
Perfect scaling

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Weak Scaling

Number of Processes

Te
ss

el
la

tio
n

Ti
m

e
pe

r P
ar

tic
le

 (i
nc

lu
di

ng
 I/

O
) (

m
icr

os
ec

on
ds

)

128 1024 8192

128^3, 256^3, 512^3 particles
Perfect scaling

Histogram of Cell Density Contrast at t = 11

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
50

0
10

00
15

00

100 bins
Range [−0.77 , 0.59]
Bin width 0.014
Skewness 1.6
Kurtosis 4.1

−0.768 −0.496 −0.225 0.046 0.318 0.589

Histogram of Cell Density Contrast at t = 21

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
50

0
10

00
15

00
20

00 100 bins
Range [−0.77 , 2.4]
Bin width 0.033
Skewness 2
Kurtosis 5.5

−0.77 −0.13 0.52 0.84 1.16 1.48 1.80 2.12 2.45

Histogram of Cell Density Contrast at t = 31

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 100 bins
Range [−0.72 , 15]
Bin width 0.15
Skewness 4.5
Kurtosis 23

−0.72 2.33 3.85 5.38 6.90 8.42 9.95 11.47 14.52

Right: Overview of
parallel algorithm by

using an example
with four processes.

Particles and Voronoi
cells are colored
according to the

process where they
originated prior to
exchanging ghost

layer.

Below: Density contrast distribution of evolving Voronoi cells at three time steps. Statistically, the
trends are consistent with the formation of ;large-scale structures such as halos and voids.

Bottom: In situ strong scaling (left) and weak scaling (center) are plotted on a log-log scale. Weak scaling time
is normalized by the number of particles. Plots represent the total tessellation time, including the time to write
the result to storage. Strong scaling efficiency is 41%; weak scaling efficiency is 86%. Bottom right: raw
performance is tabulated.

Above: Each Voronoi cell is associated with one
input particle, the site of the cell. A cell consists
all points closer to the site of that cell than to any
other site
 Vi = { x | d(x, si) < d(x, sk) } ∀ k≠ i
In 3D, Voronoi cells are polyhedra; dual is
Delaunay tetrahedralization.

Right: A unified framework
facilitates integration of new
algorithms, services, and tools
without modifying HACC code.
A simple API, consisting of 7
main functions allows different
tools to be easily controlled
through a configuration file.

Speedups of MPI DBSCAN on astrophysics
dataset

!"

#!!"

$%!!!"

$%#!!"

&%!!!"

!" #!!" $%!!!" $%#!!" &%!!!"

!"
##
$%

"&

'()#*&

'($)"

'*$+#)"

'$$#+*)"

(a) Synthetic-cluster-extended dataset

!"

#!!"

$!!"

%&'!!"

%&(!!"

'&!!!"

!")!!" %&!!!" %&)!!" '&!!!"

!"
##
$%

"&

'()#*&

*(%+"
*,%-)+"
*%%)-,+"

(b) Synthetic-random-extended dataset

!"

#!!"

$%!!!"

$%#!!"

&%!!!"

!" #!!" $%!!!" $%#!!" &%!!!"

!"
##
$%

"&

'()#*&

'("
)("
)'"

(c) Millennium-run-simulation dataset

!"

#$!!!"

%$!!!"

&$!!!"

'$!!!"

!" #$!!!" %$!!!" &$!!!" '$!!!"

!"
##
$%

"&

'()#*&

(("

(d) Millennium-run-simulation dataset

Figure 6. Speedup of PDSDBSCAN-D on Hopper at NERSC, a CRAY XE6
distributed memory computer, on three different categories of datasets.

!"

#!"

$!"

%!"

&!"

'!!"

!" ()!!!" '!)!!!" '()!!!"

!"
#$
"%

&'
("
)*
+)&
',
"%

)-
.
")

/*#"0)

*+,-.",+/012-3+4"
5678948"

(a) Local comp. vs. Merging on mm

!"!#

!"$#

!"%#

!"&#

!"'#

(&)*# (+)",*# ()),"+*#

!"
#$
%&
'(
%)
*$
+,

&-
''.

/
%'
0'

12
32

43
56

7
82
'.
/
%'
9:

;'

&%#)$'# $,&# ,)$#

(b) Synthetic-cluster-extended dataset

!"

#"

$"

%"

&"

'!"

'#"

(%')" (*'+,)" ('',+*)"

!"
#$
%&
'(
%)
*$
+,

&-
''.

/
%'
0'

12
32

43
56

7
82
'.
/
%'
9:

;'

%$" '#&" #,%" ,'#"

(c) Synthetic-random-extended dataset

!"

#"

$"

%"

&"

'!"

'#"

()" **" *)" *("

!"
#$
%&
'(
%)
*$
+,

&-
./
0
%.
1.

23
43

54
67

8
'3
./
0
%.
9:

;.

%$" '#&" #+%" +'#"

(d) Millennium-run-simulation dataset

Figure 7. (a) Trade-off between local computation and merging w.r.t the
number of processors on mm, a millennium-run-simulation dataset. (b)-(d)
Time taken by the preprocessing step, gather-neighbors, compared to the total
time taken by PDSDBSCAN-D using 64, 128, 256, and 512 processors.

synthetic-cluster-extended and millennium-simulation-run (db,
mb, md) datasets are significantly higher than the synthetic-
random-extended dataset. However, on the dataset mm in
millennium-simulation-run (Figure 6(d)), we get a speedup of
5,765 using 8,192 process cores.

Figure 7(a) shows the trade-off between the local compu-
tation and the merging stage by comparing them with the
total time (local computation time + merging time) in percent.
We use mm, the millennium-run-simulation dataset for this
purpose and continue up to 16,384 processors to understand
the behavior clearly. As can be seen, the communication time
increases (the computation time decreases) with the number
of processors. When using larger than 10,000 processors,
communication time starts dominating the computation time
and therefore, the speedup starts decreasing. For example, we
achieved a speedup of 5,765 using 8,192 process cores whereas

the speedup is 5,124 using 16,384 process cores. We observe
similar behaviors for other datasets.

Figure 7(b), 7(c), and 7(d) show a comparison of time
taken by the gather-neighbors preprocessing step over the
total time taken by PDSDBSCAN-D in percent on all datasets
using 64, 128, 256, and 512 processors. As can be seen,
the gather-neighbors step adds an overhead of maximum
0.59% (minimum 0.10% and average 0.27%) of total time on
synthetic-cluster-extended datasets. Similar results are found
on millennium-simulation-run datasets (maximum 4.82%,
minimum 0.21%, and average 1.25%). However, these num-
bers are relatively higher (maximum 9.82%, minimum 1.01%,
and average 3.76%) for synthetic-random-extended datasets as
the points are uniformly distributed in the space and therefore
the number of points gathered in each processor is higher
compared to the other two test sets. It is also to be noted
that these values increase with the number of processors and
also with the eps parameter as the overlapping region among
the processors is proportional to the number of processors. We
observe that on 64 processors the memory space taken by the
remote points in each processor is on average 0.68 times, 1.57
times, and 1.02 times on synthetic-cluster-extended, synthetic-
cluster-extended, and millennium-simulation-run datasets, re-
spectively, compared to the memory space taken by the local
points. These values changes to 1.27 times, 2.94 times, and
3.18 times, respectively on 512 processors. However, with this
scheme the local-computation stage in PDSDBSCAN-D can
perform the clustering without any communication overhead
similar to PDSDBSCAN-S. The alternative would be to perform
communication for each point to obtain its remote neighbors.

VI. CONCLUSION AND FUTURE WORK
In this study we have revisited the well-known density based

clustering algorithm, DBSCAN. This algorithm is known to
be challenging to parallelize as the computation involves an
inherent data access order. We present a new parallel DBSCAN
(PDSDBSCAN) algorithm based on the disjoint-set data struc-
ture. The use of this data structure works as a mechanism
for increasing concurrency, which again leads to scalable
performance. The algorithm uses a bottom-up approach to
construct the clusters as a collection of hierarchical trees. This
approach achieves a better-balanced work-load distribution.
PDSDBSCAN is implemented using both OpenMP and MPI.
Our experimental results conducted on a shared memory
computer show scalable performance, achieving speedups up
to a factor of 30.3 when using 40 cores on data sets contain-
ing several hundred million high-dimensional points. Similar
scalability results have been obtained on a distributed-memory
machine with a speedup of 5,765 using 8,192 process cores.
Our experiments also show that PDSDBSCAN significantly
outperforms existing parallel DBSCAN algorithms. We intend
to conduct further studies to provide more extensive results
on much larger number of cores with datasets from different
scientific domains. Finally, we note that our algorithm also
seems to be suitable for other parallel architectures, such as
GPU and heterogenous architectures.

Detail profiling for computation and
communication (merging) costs Comparison of DBSCAN and FOF clustering results

Three
representations
of the same
halo. From left
to right: original
raw particle
data, Voronoi
tessellation, and
regular grid
density
sampling.

Voronoi
tessellation of
cosmological

simulations
reveals regions

of irregular
low-density
voids amid
clusters of

high-density
halos

Right: Data-parallel halo finder using
dendrograms allows queries over a

range of linking lengths. FOF halo
finder implemented in PISTON

leverages thread-parallelism of GPUs
and many-core CPUs.

Left: Cosmic emu 2D slicer
portrays small 2D multiples of a
5D space of cosmological input
parameters and maps output
power spectrum to color.

Above: topology-aware
data movement for I/O for
smarter aggregation and
improved bandwidth.

Particles Halos link length 1.5

A B C D E F G H I

3
4

5
6

Min_ll

Max_l
l

Dendrogram

Under a common generic I/O interface, we
implemented efficient parallel I/O checkpoint /
restart based on GLEAN directly into the HACC
simulation that delivers performance at full
scale, and we are working toward pnetCDF
implementations of in situ analysis products.

• Scaled to the entire 768K cores of Mira BG/Q
• Enabled HACC cosmology production runs for

two Gordon Bell finalist submissions
• Used in production on BG/Q (Mira) and Cray

(Hopper)
• Achieved 160 GB/s for HACC I/O and up to

~10X improvement over the previous I/O
mechanism on Mira

• Written and read ~10 PB of data on Mira (and
counting)

• Used for all HACC inputs and outputs of
production runs

•  Initial lossless data compression work for I/O
completed, and custom pre-conditioner
development in progress.

Above: analysis products
such as Voronoi tessellations
are now stored in pnetCDF.

Overview
SDAV technologies aim to help cosmologists unravel the mysterious

nature of dark matter and energy by transforming raw data into
meaningful representations. For example, mesh tessellations help

analyze point data because they transform sparse discrete samples into
dense continuous functions. Similarly, large-scale structures such as
halos and voids are extracted, tracked, and summarized in high-level

models. The goal of SDAV’s partnership with computational cosmology
is to bring such methods to extreme scale.

